Application of renewable energy based devices in healthcare sector
Volume 2, Issue 1, Article Number: 251004 (2025)
Home >> Radius >> Volume 2, Issue 1
aDepartment of Chemistry, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
bDepartment of Education in Science and Mathematics, National Council of Educational Research and Training (NCERT), New Delhi, Delhi-110016, India
*Corresponding Author: sudeshneyol@ncert.nic.in
Received: 18 February 2025 | Revised: 18 March 2025
Accepted: 19 March 2025 | Published Online: 22 March 2025
DOI: https://doi.org/10.5281/zenodo.15068955
© 2025 The Authors, under a Creative Commons license, Published by Scholarly Publication
Abstract
Global energy consumption is exceeding available generation capacity at an alarming rate. Energy security and reliability must be increased and vigorous research into alternative energy sources is required to efficiently fulfill future energy demands. The second most energy-intensive building type in the commercial sector is healthcare facilities, which use a lot of energy. This review provides a comprehensive overview of the current advancements and applications of renewable energy sources in healthcare systems. The study explores various innovative devices powered by renewable energy, including triboelectric nanogenerators, biofuel cells, solar-powered medical equipment, and wearable technologies. Key applications such as drug delivery systems, implantable medical devices, solar autoclaves, heart and respiratory monitoring systems, glucometers, and solar microscopes are discussed in detail. The review highlights the advantages of these innovations in reducing carbon footprint and improving medical efficiency.
Keywords
Renewable Devices; Biofuel Cells; Healthcare; Triboelectric Generators
References
- Zhao, C., Feng, H., Zhang, L., Li, Z., Zou, Y., Tan, P., … & Li, Z. (2019). Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Advanced Functional Materials, 29, 1808640.
[View Article] [Google Scholar]
- Liu, Z., Ma, Y., Ouyang, H., Shi, B., Li, N., Jiang, D., … & Li, Z. (2019). Transcatheter self‐powered ultrasensitive endocardial pressure sensor. Advanced Functional Materials, 29, 1807560.
[View Article] [Google Scholar]
- Wang, J., He, T., & Lee, C. (2019). Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy, 65, 104039.
[View Article] [Google Scholar]
- Ma, Y., Zheng, Q., Liu, Y., Shi, B., Xue, X., Ji, W., … & Zhang, H. (2016). Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano letters, 16, 6042-6051.
[View Article] [Google Scholar]
- Feng, H., Zhao, C., Tan, P., Liu, R., Chen, X., & Li, Z. (2018). Nanogenerator for biomedical applications. Advanced Healthcare Materials, 7, 1701298.
[View Article] [Google Scholar]
- Guan, Q., Dai, Y., Yang, Y., Bi, X., Wen, Z., & Pan, Y. (2018). Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy, 51, 333-339.
[View Article] [Google Scholar]
- Papadopoulos, A. M. (2016). Energy efficiency in hospitals: Historical development, trends and perspectives. In: Boemi, SN., Irulegi, O., Santamouris, M. (eds) Energy performance of buildings: energy efficiency and built environment in temperate climates, Springer Nature, 217-233.
[View Chapter] [Google Scholar]
- Santamouris, M., Dascalaki, E., Balaras, C., Argiriou, A., & Gaglia, A. (1994). Energy performance and energy conservation in health care buildings in Hellas. Energy conversion and management, 35, 293-305.
[View Article] [Google Scholar]
- Adair-Rohani, H., Zukor, K., Bonjour, S., Wilburn, S., Kuesel, A. C., Hebert, R., & Fletcher, E. R. (2013). Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability. Global Health: Science and Practice, 1, 249-261.
[View Article] [Google Scholar]
- Jahangir, M. H., Eslamnezhad, S., Mousavi, S. A., & Askari, M. (2021). Multi-year sensitivity evaluation to supply prime and deferrable loads for hospital application using hybrid renewable energy systems. Journal of Building Engineering, 40, 102733.
[View Article] [Google Scholar]
- Mehrpooya, M., Shahsavan, M., & Sharifzadeh, M. M. M. (2016). Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study. Energy, 115, 257-273.
[View Article] [Google Scholar]
- Kalak, T. (2023). Potential use of industrial biomass waste as a sustainable energy source in the future. Energies, 16, 1783.
[View Article] [Google Scholar]
- Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., Patricio, R., … & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35, 102693.
[View Article] [Google Scholar]
- Haghighi Bardineh, Y., Mohamadian, F., Ahmadi, M. H., & Akbarianrad, N. (2018). Medical and dental applications of renewable energy systems. International Journal of Low-Carbon Technologies, 13, 320-326.
[View Article] [Google Scholar]
- Zeng, C., Stringer, L. C., & Lv, T. (2021). The spatial spillover effect of fossil fuel energy trade on CO2 emissions. Energy, 223, 120038.
[View Article] [Google Scholar]
- Tsai, B. H., Chang, C. J., & Chang, C. H. (2016). Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models. Energy, 100, 416-424.
[View Article] [Google Scholar]
- Mousavi, S. A., Zarchi, R. A., Astaraei, F. R., Ghasempour, R., & Khaninezhad, F. M. (2021). Decision-making between renewable energy configurations and grid extension to simultaneously supply electrical power and fresh water in remote villages for five different climate zones. Journal of Cleaner Production, 279, 123617.
[View Article] [Google Scholar]
- Olatomiwa, L., Blanchard, R., Mekhilef, S., & Akinyele, D. (2018). Hybrid renewable energy supply for rural healthcare facilities: An approach to quality healthcare delivery. Sustainable Energy Technologies and Assessments, 30, 121-138.
[View Article] [Google Scholar]
- Maleki, A., Pourfayaz, F., & Ahmadi, M. H. (2016). Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Solar Energy, 139, 666-675.
[View Article] [Google Scholar]
- Mohammadnezami, M. H., Ehyaei, M. A., Rosen, M. A., & Ahmadi, M. H. (2015). Meeting the electrical energy needs of a residential building with a wind-photovoltaic hybrid system. Sustainability, 7, 2554-2569.
[View Article] [Google Scholar]
- Ahmadi, M. H., Dehghani, S., Mohammadi, A. H., Feidt, M., & Barranco-Jimenez, M. A. (2013). Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Conversion and Management, 75, 635-642.
[View Article] [Google Scholar]
- Abad, H. K. S., Ghiasi, M., Mamouri, S. J., & Shafii, M. B. (2013). A novel integrated solar desalination system with a pulsating heat pipe. Desalination, 311, 206-210.
[View Article] [Google Scholar]
- Ahmadi, M. H., Hosseinzade, H., Sayyaadi, H., Mohammadi, A. H., & Kimiaghalam, F. (2013). Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy, 60, 313-322.
[View Article] [Google Scholar]
- Gurieff, N., Green, D., Koskinen, I., Lipson, M., Baldry, M., Maddocks, A., … & Doroodchi, E. (2020). Healthy power: Reimagining hospitals as sustainable energy hubs. Sustainability, 12, 8554.
[View Article] [Google Scholar]
- Vourdoubas, J. (2021). Use of renewable energy sources for heat and cooling generation in hospitals. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 79, 98-112.
- Meng, X., Suh, I. Y., Xiao, X., Pang, F., Jeon, J., Cho, D. S., … & Kim, S. W. (2024). Triboelectric and piezoelectric technologies for self-powered microbial disinfection. Nano Energy, 127, 109716.
[View Article] [Google Scholar]
- Yu, H., Kong, J., Mao, M., Ge, X., Sun, Y., Liu, J., … & Wang, Y. (2024). Self-powered biodegradable and antibacterial MoS2-based triboelectric nanogenerators for the acceleration of wound healing in diabetes. Nano Energy, 121, 109225.
[View Article] [Google Scholar]
- Baburaj, A., Banerjee, S., Aliyana, A. K., Shee, C., Banakar, M., Bairagi, S., & Ali, S. W. (2024). Biodegradable based TENGs for self-sustaining implantable medical devices. Nano Energy, 127, 109785.
[View Article] [Google Scholar]
- Yu, Z., Zhu, Z., Zhang, Y., Li, X., Liu, X., Qin, Y., … & He, H. (2024). Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing. Carbohydrate Polymers, 334, 122040.
[View Article] [Google Scholar]
- Bindhu, A., Arun, A. P., & Pathak, M. (2024). Review on polyvinylidene fluoride-based triboelectric nanogenerators for applications in health monitoring and energy harvesting. ACS Applied Electronic Materials, 6, 47-72.
[View Article] [Google Scholar]
- Kim, W. G., Kim, D. W., Tcho, I. W., Kim, J. K., Kim, M. S., & Choi, Y. K. (2021). Triboelectric nanogenerator: Structure, mechanism, and applications. ACS nano, 15, 258-287.
[View Article] [Google Scholar]
- Kasi, A. K., Kasi, J. K., Uddin, M., & Bokhari, M. (2020). Triboelectric nanogenerator as self-powered impact force sensor for falling object. Current Applied Physics, 20, 137-144.
[View Article] [Google Scholar]
- Luo, W., Luo, R., Liu, J., Li, Z., & Wang, Y. (2024). Self‐Powered Electrically Controlled Drug Release Systems Based on Nanogenerator. Advanced Functional Materials, 34, 2311938.
[View Article] [Google Scholar]
- Liu, M. N., Chen, T., Yin, F., Song, W. Z., Wu, L. X., Zhang, J., … & Long, Y. Z. (2024). Smart Bandage Based on a ZIF-8 Triboelectric Nanogenerator for In Situ Real-Time Monitoring of Drug Concentration. ACS Applied Materials & Interfaces, 16, 39079-39089.
[View Article] [Google Scholar]
- Cheng, Y. Y., Ganguly, A., Cheng, Y. Y., Ortiz, C. L. D., Pal, A., Shah, P., … & Lin, Z. H. (2024). Development of label-free triboelectric nanosensors as screening platforms for anti-tumor drugs. Nano Energy, 125, 109519.
[View Article] [Google Scholar]
- Ikram, M., & Mahmud, M. P. (2023). Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therapies. Drug Delivery and Translational Research, 13, 54-78.
[View Article] [Google Scholar]
- Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS nano, 7, 9533-9557.
[View Article] [Google Scholar]
- Khandelwal, G., Ediriweera, M. K., Kumari, N., Maria Joseph Raj, N. P., Cho, S. K., & Kim, S. J. (2021). Metal-amino acid nanofibers based triboelectric nanogenerator for self-powered thioacetamide sensor. ACS Applied Materials & Interfaces, 13, 18887-18896.
[View Article] [Google Scholar]
- Mathew, A. A., Chandrasekhar, A., & Vivekanandan, S. (2021). A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy, 80, 105566.
[View Article] [Google Scholar]
- Sun, J., Yang, A., Zhao, C., Liu, F., & Li, Z. (2019). Recent progress of nanogenerators acting as biomedical sensors in vivo. Science Bulletin, 64, 1336-1347.
[View Article] [Google Scholar]
- Khandelwal, G., Chandrasekhar, A., Maria Joseph Raj, N. P., & Kim, S. J. (2019). Metal–organic framework: a novel material for triboelectric nanogenerator–based self‐powered sensors and systems. Advanced Energy Materials, 9, 1803581.
[View Article] [Google Scholar]
- Song, P., Kuang, S., Panwar, N., Yang, G., Tng, D. J. H., Tjin, S. C., … & Wang, Z. L. (2017). A self‐powered implantable drug‐delivery system using biokinetic energy. Advanced Materials, 29, 1605668.
[View Article] [Google Scholar]
- Ouyang, Q., Feng, X., Kuang, S., Panwar, N., Song, P., Yang, C., … & Wang, Z. L. (2019). Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy, 62, 610-619.
[View Article] [Google Scholar]
- Liu, Z., Nie, J., Miao, B., Li, J., Cui, Y., Wang, S., … & Wang, Z. L. (2019). Self‐powered intracellular drug delivery by a biomechanical energy‐driven triboelectric nanogenerator. Advanced Materials, 31, 1807795.
[View Article] [Google Scholar]
- Zheng, Q., Zhang, H., Shi, B., Xue, X., Liu, Z., Jin, Y., … & Wang, Z. L. (2016). In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS nano, 10, 6510-6518.
[View Article] [Google Scholar]
- Joseph, J., Ponnuchamy, M., Kapoor, A., & Sivaraman, P. (2021). Applications of biofuel cells. Biofuel Cells: Materials and Challenges, Wiley, 465-482.
[View Chapter] [Google Scholar]
- Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical reviews, 104, 4245-4270.
[View Article] [Google Scholar]
- Lim, S. S., Daud, W. R. W., Jahim, J. M., Ghasemi, M., Chong, P. S., & Ismail, M. (2012). Sulfonated poly (ether ether ketone)/poly (ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. International Journal of Hydrogen Energy, 37, 11409-11424.
[View Article] [Google Scholar]
- Justin, G. A., Zhang, Y., Cui, X. T., Bradberry, C. W., Sun, M., & Sclabassi, R. J. (2011). A metabolic biofuel cell: conversion of human leukocyte metabolic activity to electrical currents. Journal of Biological Engineering, 5, 1-10.
[View Article] [Google Scholar]
- Sheng, H., Zhang, X., Liang, J., Shao, M., Xie, E., Yu, C., & Lan, W. (2021). Recent advances of energy solutions for implantable bioelectronics. Advanced Healthcare Materials, 10, 2100199.
[View Article] [Google Scholar]
- Güven, G., Lozano-Sanchez, P., & Güven, A. (2013). Power generation from human leukocytes/lymphocytes in mammalian biofuel cell. International Journal of Electrochemistry, 2013, 706792.
[View Article] [Google Scholar]
- Ramanavicius, S., & Ramanavicius, A. (2021). Charge transfer and biocompatibility aspects in conducting polymer-based enzymatic biosensors and biofuel cells. Nanomaterials, 11, 371.
[View Article] [Google Scholar]
- Zebda, A., Gondran, C., Le Goff, A., Holzinger, M., Cinquin, P., & Cosnier, S. (2011). Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nature communications, 2, 370.
[View Article] [Google Scholar]
- Slaughter, G., & Kulkarni, T. (2016). A self-powered glucose biosensing system. Biosensors and Bioelectronics, 78, 45-50.
[View Article] [Google Scholar]
- Slaughter, G. (2006). Current advances in biosensor design and fabrication. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Wiley, 1-25.
[View Chapter] [Google Scholar]
- Chakraborty, I., Olsson, R. T., Andersson, R. L., & Pandey, A. (2024). Glucose-based biofuel cells and their applications in medical implants: a review. Heliyon, 10, e33615.
[View Article] [Google Scholar]
- Di, K., Wei, J., Ding, L., Shao, Z., Sha, J., Zhou, X., … & Wang, K. (2025). A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 36, 109911.
[View Article] [Google Scholar]
- Zhang, Y., Ding, J., Qi, B., Tao, W., Wang, J., Zhao, C., … & Shi, J. (2019). Multifunctional fibers to shape future biomedical devices. Advanced Functional Materials, 29, 1902834.
[View Article] [Google Scholar]
- Werner, V. M., Kist, A., & Eblenkamp, M. (2019). Cytotoxicity of catalysed silicone resin coatings for smart biomedical devices. Current Directions in Biomedical Engineering, 5, 165-170.
[View Article] [Google Scholar]
- Kusama, S., Sato, K., Yoshida, S., & Nishizawa, M. (2020). Self‐moisturizing smart contact lens employing electroosmosis. Advanced Materials Technologies, 5, 1900889.
[View Article] [Google Scholar]
- Falk, M., Andoralov, V., Blum, Z., Sotres, J., Suyatin, D. B., Ruzgas, T., … & Shleev, S. (2012). Biofuel cell as a power source for electronic contact lenses. Biosensors and Bioelectronics, 37, 38-45.
[View Article] [Google Scholar]
- Falk, M., Andoralov, V., Silow, M., Toscano, M. D., & Shleev, S. (2013). Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Analytical chemistry, 85, 6342-6348.
[View Article] [Google Scholar]
- Ghavidel, M. Z., Rahman, M. R., & Easton, E. B. (2018). Fuel cell-based breath alcohol sensors utilizing Pt-alloy electrocatalysts. Sensors and Actuators B: Chemical, 273, 574-584.
[View Article] [Google Scholar]
- Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews, 16, 2920-2925.
[View Article] [Google Scholar]
- Ahmadi, M. H., Ahmadi, M. A., Nazari, M. A., Mahian, O., & Ghasempour, R. (2019). A proposed model to predict thermal conductivity ratio of Al 2 O 3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. Journal of Thermal Analysis and Calorimetry, 135, 271-281.
[View Article] [Google Scholar]
- Puchana-Rosero, M. J., Adebayo, M. A., Lima, E. C., Machado, F. M., Thue, P. S., Vaghetti, J. C., … & Gutterres, M. (2016). Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 105-115.
[View Article] [Google Scholar]
- Ahmadi, M. H., Mirlohi, A., Nazari, M. A., & Ghasempour, R. (2018). A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids, 265, 181-188.
[View Article] [Google Scholar]
- Hameed, S. A., & Hameed, R. H. (2024, October). Simulation and modeling by Ansys 16.1 to design solar autoclave to sterilize medical tools and distillation water using parabolic dish. In IET Conference Proceedings CP906 (Vol. 2024, No. 34, pp. 87-92). Stevenage, UK: The Institution of Engineering and Technology.
[View Article] [Google Scholar]
- Ituna-Yudonago, J. F., Galindo-Luna, Y. R., Garcia-Valladares, O., y Brown, R. B., Shankar, R., & Ibarra-Bahena, J. (2021). Review of solar-thermal collectors powered autoclave for the sterilization of medical equipment. Alexandria Engineering Journal, 60, 5401-5417.
[View Article] [Google Scholar]
- Jassim, M. M., Abbood, M. H., & Rashid, F. L. (2022). Design and construction solar oven sterilizer. International Journal of Heat and Technology, 40, 641-645.
[View Article] [Google Scholar]
- Hoover, J. N., Singer, D. L., Pahwa, P., & Komiyama, K. (1992). Clinical evaluation of a light energy conversion toothbrush. Journal of clinical periodontology, 19, 434-436.
[View Article] [Google Scholar]
- Flickenger, R. (2007). Wireless Networking in the Developing World: A practical guide to planning and building low-cost telecommunications infrastructure. Hacker Friendly LLC, Seattle, WA, US.
- Dennis, T. (2013). A focused super-continuum solar simulator for illuminated solar cell microscopy. Technical Proceedings of the 2013 Nanotechnology Conference and Trade Show, Nanotech 2013, National Harbor, MD.
[View Article] [Google Scholar]
- Rao, C. N., Sravani, K., Paul, P. V., & Balakrishna, K. Comparative Case Study Analysis of Conventional and Solar Energy Systems. International journal of health sciences, 6, 6854-6863.
[View Article] [Google Scholar]
- Butt, M. A., Kazanskiy, N. L., & Khonina, S. N. (2022). Revolution in flexible wearable electronics for temperature and pressure monitoring—A review. Electronics, 11, 716.
[View Article] [Google Scholar]
- Thielen, M., Sigrist, L., Magno, M., Hierold, C., & Benini, L. (2017). Human body heat for powering wearable devices: From thermal energy to application. Energy Conversion and Management, 131, 44-54.
[View Article] [Google Scholar]
- Magno, M., Brunelli, D., Sigrist, L., Andri, R., Cavigelli, L., Gomez, A., & Benini, L. (2016). InfiniTime: Multi-sensor wearable bracelet with human body harvesting. Sustainable Computing: Informatics and Systems, 11, 38-49.
[View Article] [Google Scholar]
- GK, R., & Baskaran, K. (2012). A survey on futuristic health care system: WBANs. Procedia Engineering, 30, 889-896.
[View Article] [Google Scholar]
- Götz, M., & Kanoun, O. (2018). Ultralow power voltage supervisor for ambient power-driven microcontroller systems. IEEE Transactions on Industrial Electronics, 66, 3843-3851.
[View Article] [Google Scholar]
- Lukas, C. J., Yahya, F. B., Breiholz, J., Roy, A., Chen, X., Patel, H. N., … & Calhoun, B. H. (2019). A 1.02 μW battery-less, continuous sensing and post-processing SiP for wearable applications. IEEE Transactions on Biomedical Circuits and Systems, 13, 271-281.
Cite This Article
A. Mehta, T. Kathuria and S. Kumar, “Application of renewable energy based devices in healthcare sector,” Radius: Journal of Science and Technology 2(1) (2025) 251004. https://doi.org/10.5281/zenodo.15068955
Rights & Permission
This is an open access article published under the Creative Commons Attribution (CC BY) International License, which allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. No permission is needed to reuse this content under the terms of the license.
For uses not covered above, please contact the Scholarly Publication Rights Department.