Exploring Halide Double Perovskites for Enhanced Efficiency in Photovoltaic Application

Volume 1, Issue 1,  Article Number: 241002 (2024) 

Sunita Kumari1,* | Jitendra Kumar Bairwa2 ORCID logo

1Department of Physics, Govt. Shakambhar P. G. College, Sambhar–Lake, Jaipur – 303604, Rajasthan, India

2Rajesh Pilot Govt. College, Lalsot, Dausa – 303504, Rajasthan, India

*Corresponding Author: parewasunita20@gmail.com

Received: 18 September 2024 | Revised: 27 September 2024

Accepted: 28 September 2024 | Published Online: 27 October 2024

© The Author(s), under exclusive license to Scholarly Publication

Abstract

The investigation of halide double perovskites has gained significant attention in recent years due to their promising potential in photovoltaic applications. These materials, characterized by their unique structural, electronic, and optical properties, offer an alternative to traditional lead-based perovskites, addressing environmental and stability concerns. This study focuses on the structural, electronic, and optical properties of halide double perovskites, exploring their suitability for use in solar cells. By employing computational methods such as density functional theory (DFT), we analyze the crystal structure, band gap, and electronic transitions of these materials, aiming to understand how their intrinsic properties can be tuned for optimal photovoltaic performance. The results indicate that halide double perovskites exhibit excellent optical absorption in the visible spectrum, a desirable trait for efficient solar energy conversion. Additionally, the band gap of these materials can be fine-tuned through compositional changes, allowing for enhanced electronic performance. The stability of halide double perovskites, particularly in comparison to lead-based counterparts, is also highlighted as a key advantage for long-term use in photovoltaic devices. This research underscores the potential of halide double perovskites as a viable alternative for next-generation solar cells, offering a balance between high efficiency, environmental sustainability, and stability. The findings contribute to the growing body of knowledge on perovskite materials and pave the way for further experimental studies aimed at improving photovoltaic device performance using halide double perovskites. The significance of our study is to develop the halide double perovskites and their photovoltaic application.

Keywords

Solar cell; Bandgap; Thermoelectric generator; Photovoltaic devices; Double perovskites

References

  1. Pandey, A. K., Kumar, R., & Samykano, M. (2022). Chapter 1 – Solar energy: direct and indirect methods to harvest usable energy. In Dye-Sensitized Solar Cells, 1-24. Academic Press.

[View Chapter]     [Google Scholar]

  1. Soumya, C., Deepanraj, B., & Ranjitha, J. (2021). A review on solar photovoltaic systems and its application in electricity generation. In AIP Conference Proceedings, 2396. AIP Publishing.

[View Chapter]     [Google Scholar]

  1. Wang, N., Liu, Z. X., Ding, C., Zhang, J. N., Sui, G. R., Jia, H. Z., & Gao, X. M. (2021). High efficiency thermoelectric temperature control system with improved proportional integral differential algorithm using energy feedback technique. IEEE Transactions on Industrial Electronics, 69, 5225-5234.

[View Article]       [Google Scholar]

  1. Ochieng, A. O., Megahed, T. F., Ookawara, S., & Hassan, H. (2022). Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation. Process Safety and Environmental Protection, 162, 134-154.

[View Article]       [Google Scholar]

  1. Rathore, N., Panwar, N. L., Yettou, F., & Gama, A. (2021). A comprehensive review of different types of solar photovoltaic cells and their applications. International Journal of Ambient Energy, 42, 1200-1217.

[View Article]       [Google Scholar]

  1. Seme, S., Štumberger, B., Hadžiselimović, M., & Sredenšek, K. (2020). Solar photovoltaic tracking systems for electricity generation: A review. Energies, 13, 4224.

[View Article]       [Google Scholar]

  1. Arya, S., & Mahajan, P. (2023). Introduction to Solar Cells. In Solar Cells: Types and Applications, 1-35. Springer Nature, Singapore.

[View Chapter]     [Google Scholar]

  1. Pham, H. D., Yang, T. C. J., Jain, S. M., Wilson, G. J., & Sonar, P. (2020). Development of dopant‐free organic hole transporting materials for perovskite solar cells. Advanced Energy Materials, 10, 1903326.

[View Article]       [Google Scholar]

  1. Zheng, Y., Li, Y., Zhuang, R., Wu, X., Tian, C., Sun, A., … & Chen, C. C. (2024). Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy & Environmental Science, 17, 1153-1162.

[View Article]       [Google Scholar]

  1. Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590-601.

[View Article]       [Google Scholar]

  1. Isabela, C. B., Lameirinhas, R. A. M., Torres, J. P. N., & Fernandes, C. A. (2021). Comparative study of the copper indium gallium selenide (CIGS) solar cell with other solar technologies. Sustainable Energy & Fuels, 5, 2273-2283.

[View Article]       [Google Scholar]

  1. Cui, Y., Hong, L., & Hou, J. (2020). Organic photovoltaic cells for indoor applications: opportunities and challenges. ACS Applied Materials & Interfaces, 12, 38815-38828.

[View Article]       [Google Scholar]

  1. Sampaio, P. G. V., & González, M. O. A. (2022). A review on organic photovoltaic cell. International Journal of Energy Research, 46, 17813-17828.

[View Article]       [Google Scholar]

  1. Green, M. A. (2001). Third generation photovoltaics: Ultra‐high conversion efficiency at low cost. Progress in photovoltaics: Research and Applications, 9, 123-135.

[View Article]       [Google Scholar]

  1. Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., … & Hao, X. (2024). Solar cell efficiency tables (Version 64). Progress in Photovoltaics: Research and Applications32, 425-441.

[View Article]       [Google Scholar]

  1. Bisquert, J. (2016). Consolidation and Expansion of Perovskite Solar Cell Research. The Journal of Physical Chemistry Letters, 7, 775-775.

[View Article]       [Google Scholar]

  1. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051.

[View Article]       [Google Scholar]

  1. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science338, 643-647.

[View Article]       [Google Scholar]

  1. Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., … & Kim, J. Y. (2021). Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381-385.

[View Article]       [Google Scholar]

  1. Bisht, N., More, P., Khanna, P. K., Abolhassani, R., Mishra, Y. K., & Madsen, M. (2021). Progress of hybrid nanocomposite materials for thermoelectric applications. Materials Advances, 2, 1927-1956.

[View Article]       [Google Scholar]

  1. Seebeck, T. J. (1825). Ueber die Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Köngilichen Akademie der Wissenschaften.

[View Article]       [Google Scholar]

  1. Goldsmid, H. J. (2017). Chapter 1 – The Seebeck and Peltier effects. In The Physics of Thermoelectric Energy Conversion, 1-3. Morgan and Claypool Publisher, San Rafael.

[View Chapter]     [Google Scholar]

  1. Schierning, G., Chavez, R., Schmechel, R., Balke, B., Rogl, G., & Rogl, P. (2015). Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design. Translational Materials Research, 2, 025001.

[View Article]       [Google Scholar]

  1. Wu, T., Kim, J., Lim, J. H., Kim, M. S., & Myung, N. V. (2021). Comprehensive review on thermoelectric electrodeposits: Enhancing thermoelectric performance through nanoengineering. Frontiers in Chemistry, 9, 762896.

[View Article]       [Google Scholar]

  1. Luo, D., Li, Y., Yan, Y., Hu, X., Chen, W. H., Ren, Y., & Cao, B. (2023). Realizing ultrahigh ZT value and efficiency of the Bi2Te3 thermoelectric module by periodic heating. Energy Conversion and Management, 296, 117669.

[View Article]       [Google Scholar]

  1. Shtern, Y., Sherchenkov, A., Shtern, M., Rogachev, M., & Pepelyaev, D. (2023). Challenges and perspective recent trends of enhancing the efficiency of thermoelectric materials on the basis of PbTe. Materials Today Communications, 37, 107083.

[View Article]       [Google Scholar]

  1. Basu, R., & Singh, A. (2021). High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review. Materials Today Physics, 21, 100468.

[View Article]       [Google Scholar]

  1. Mori, T. (2017). Novel principles and nanostructuring methods for enhanced thermoelectrics. Small, 13, 1702013.

[View Article]       [Google Scholar]

  1. Al-Fartoos, M. M. R., Roy, A., Mallick, T. K., & Tahir, A. A. (2023). Advancing thermoelectric materials: a comprehensive review exploring the significance of one-dimensional nano structuring. Nanomaterials, 13, 2011.

[View Article]       [Google Scholar]

  1. Li, X., Liu, J., Li, S., Zhang, J., Li, D., Xu, R., … & Tang, G. (2020). Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe. Nano Energy, 67, 104261.

[View Article]       [Google Scholar]

  1. He, T., Li, X., Tang, J., Zuo, X., Zheng, Y., Zhang, D., & Tang, G. (2020). Boosting thermoelectric performance of BiCuSeO by improving carrier mobility through light element doping and introducing nanostructures. Journal of Alloys and Compounds, 831, 154755.

[View Article]       [Google Scholar]

  1. Chen, R., Chen, L., & Liang, Z. (2023). Strategic doping in metal halide perovskites for thermoelectrics. Advanced Functional Materials, 33, 2303774.

[View Article]       [Google Scholar]

  1. Saha, M., Tregenza, O., Twelftree, J., & Hulston, C. (2023). A review of thermoelectric generators for waste heat recovery in marine applications. Sustainable Energy Technologies and Assessments, 59, 103394.

[View Article]       [Google Scholar]

  1. Pacheco, N., Brito, F. P., Vieira, R., Martins, J., Barbosa, H., & Goncalves, L. M. (2020). Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy, 197, 117154.

[View Article]       [Google Scholar]

  1. Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., & Ismail, M. (2020). A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, 6, 264-287.

[View Article]       [Google Scholar]

  1. Salah, W. A., & Abuhelwa, M. (2020). Review of thermoelectric cooling devices recent applications. Journal of Engineering Science and Technology, 15, 455-476.

[View PDF]           [Google Scholar]

  1. Yan, Q., & Kanatzidis, M. G. (2022). High-performance thermoelectrics and challenges for practical devices. Nature Materials, 21, 503-513.

[View Article]       [Google Scholar]

  1. He, J., Li, K., Jia, L., Zhu, Y., Zhang, H., & Linghu, J. (2023). Advances in the applications of thermoelectric generators. Applied Thermal Engineering, 236, 121813.

[View Article]       [Google Scholar]

  1. Wu, W., Ren, G. K., Chen, X., Liu, Y., Zhou, Z., Song, J., … & Lin, Y. H. (2021). Interfacial advances yielding high efficiencies for thermoelectric devices. Journal of Materials Chemistry A, 9, 3209-3230.

[View Article]       [Google Scholar]

  1. De Graef, M., & McHenry, M. E. (2012). Structure of materials: an introduction to crystallography, diffraction and symmetry. Cambridge University Press. ISBN: 978-1-107-00587-7.

[View PDF]           [Google Scholar]

  1. Wu, M., Li, W., Li, J., Wang, S., Li, Y., Peng, B., … & Lou, X. (2017). Fatigue mechanism verified using photovoltaic properties of Pb(Zr52Ti0.48)O3 thin films. Applied Physics Letters, 110, 133903.

[View Article]       [Google Scholar]

  1. Saha-Dasgupta, T. (2020). Double perovskites with 3d and 4d/5d transition metals: compounds with promises. Materials Research Express, 7, 014003.

[View Article]       [Google Scholar]

  1. Vasala, S., & Karppinen, M. (2015). A2B′B″O6 perovskites: a review. Progress in Solid State Chemistry, 43, 1-36.

[View Article]       [Google Scholar]

  1. McClure, E. T., Ball, M. R., Windl, W., & Woodward, P. M. (2016). Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, 28, 1348-1354.

[View Article]       [Google Scholar]

  1. Guechi, N., Bouhemadou, A., Bin-Omran, S., Bourzami, A., & Louail, L. (2018). Elastic, optoelectronic and thermoelectric properties of the lead-free halide semiconductors Cs2AgBiX6 (X= Cl, Br): ab initio investigation. Journal of Electronic Materials, 47, 1533-1545.

[View Article]       [Google Scholar]

  1. Wolf, N. R., Connor, B. A., Slavney, A. H., & Karunadasa, H. I. (2021). Doubling the stakes: the promise of halide double perovskites. Angewandte Chemie, 133, 16400-16414.

[View Article]       [Google Scholar]

  1. Sk, M. (2022). Recent progress of lead-free halide double perovskites for green energy and other applications. Applied Physics A, 128, 462.

[View Article]       [Google Scholar]

  1. Bie, J., Yang, D. B., Ju, M. G., Pan, Q., You, Y. M., Fa, W., … & Chen, S. (2021). Molecular design of three-dimensional metal-free A(NH4)X3 perovskites for photovoltaic applications. JACS Au, 1, 475-483.

[View Article]       [Google Scholar]

  1. Babu, K. R., & Vaitheeswaran, G. (2014). Density functional study of electronic structure, elastic and optical properties of MNH2 (M= Li, Na, K, Rb). Journal of Physics: Condensed Matter, 26, 235503.

[View Article]       [Google Scholar]

  1. Zhong, H., Feng, C., Wang, H., Han, D., Yu, G., Xiong, W., … & Yuan, S. (2021). Structure–composition–property relationships in antiperovskite nitrides: Guiding a rational alloy design. ACS Applied Materials & Interfaces, 13, 48516-48524.

[View Article]       [Google Scholar]

  1. Wang, Y., Zhang, H., Zhu, J., Lü, X., Li, S., Zou, R., & Zhao, Y. (2020). Antiperovskites with exceptional functionalities. Advanced Materials, 32, 1905007.

[View Article]       [Google Scholar]

  1. Zheng, J., Perry, B., & Wu, Y. (2021). Antiperovskite superionic conductors: a critical review. ACS Materials Au, 1, 92-106.

[View Article]       [Google Scholar]

  1. Pauling, L. (1929). The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010-1026.

[View Article]       [Google Scholar]

  1. Goldschmidt, V. M. (1926). Die gesetze der krystallochemie. Naturwissenschaften, 14, 477-485.

[View Article]       [Google Scholar]

  1. Reaney, I. M., Colla, E. L. C. E. L., & Setter, N. S. N. (1994). Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor. Japanese Journal of Applied Physics, 33, 3984.

[View Article]       [Google Scholar]

Cite This Article

S. Kumari and J. K. Bairwa, “Exploring Halide Double Perovskites for Enhanced Efficiency in Photovoltaic Application,” Radius: Journal of Science and Technology 1(1) (2024) 241002.

Rights & Permission

Authors retain copyright of their research articles in this journal, which are published under a Creative Commons Attribution 4.0 (CC-BY) International License, allowing broad dissemination and reuse, including commercial use, provided proper credit is given. The publisher holds exclusive rights to publish, distribute, and grant permissions, including for commercial use, ensure the article’s compatibility with future technologies, and enforce rights against third parties, such as in cases of plagiarism or copyright infringement.