Enhancing Human-Computer Interaction through Brain-Computer Interfaces
Volume 2, Issue 1, Article Number: 251010 (2025)
Home >> Radius >> Volume 2, Issue 1
Muskan Parveen1,* | Garima Sharma2
1Research Scholar, 2Assistant Professor
Department of Computer Science, School of Engineering & Technology, Shri Venkateshwara University, Gajraula, Uttar Pradesh
*Corresponding Author: mp2984464@gmail.com
Received: 04 May 2025 | Revised: 12 May 2025
Accepted: 13 May 2025 | Published Online: 14 May 2025
DOI: https://doi.org/10.5281/zenodo.15399647
© 2025 The Authors, under a Creative Commons license, Published by Scholarly Publication
Abstract
HCI is transformed by BCI interactions, breaking previous boundaries for the results to go directly into the device and creating a direct neuron-to-computer communication. The Work is centered on the improvement in HCI made possible by BCIs, notably greater simplicity and ease for those who have physical limitations. It calls into question present BCI systems, develops them into working interactive devices, tackles signal noise and user adaptability, and flagships future concepts such as neural decoding, AI, and ethical considerations. Neuroscience, AI, and user interface engineering together are design indicators for a smooth, cognition-enabling interactive era.
Keywords
Brain-Computer Interfaces, HCI, AI integration, Neuroscience, Neurotechnology, EEG
References
- Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., Khandoker, Ahsan. H., & Baumert, M. (2021). Progress in brain computer interface: Challenges and opportunities. Frontiers in Systems Neuroscience, 15, 578875.
[View Article] [Google Scholar]
- Chang, C. T., Pai, K. J., Huang, C. H., Chou, C. Y., Liu, K. W., & Lin, H. B. (2024). Optimizing user experience in SSVEP-BCI systems. Progress in Brain Research, 290, 105–121.
[View Article] [Google Scholar]
- Ladouce, S., Darmet, L., Torre Tresols, J. J., Velut, S., Ferraro, G., & Dehais, F. (2022). Improving user experience of SSVEP BCI through low amplitude depth and high frequency stimuli design. Scientific Reports, 12, 8865.
[View Article] [Google Scholar]
- Peters, B., Mooney, A., Oken, B., & Fried-Oken, M. (2016). Soliciting BCI User Experience Feedback From People With Severe Speech And Physical Impairments. Brain Computer Interfaces, 3, 47–58.
[View Article] [Google Scholar]
- Dreyer, A. M., Herrmann, C. S., & Rieger, J. W. (2017). Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials. Frontiers in Human Neuroscience, 11, 391.
[View Article] [Google Scholar]
- Cabrera Castillos, K., Ladouce, S., Darmet, L., & Dehais, F. (2023). Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience. NeuroImage, 284, 120446.
[View Article] [Google Scholar]
- Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21, 1148–1160.
[View Article] [Google Scholar]
- Medaglia, J. D., Lynall, M. E., & Bassett, D. S. (2015). Cognitive network neuroscience. Journal of Cognitive Neuroscience, 27, 1471–1491.
[View Article] [Google Scholar]
- Hebart, M. N., & Schuck, N. W. (2020). Current topics in Computational Cognitive Neuroscience. Neuropsychologia, 147, 107621.
[View Article] [Google Scholar]
- Hochheiser, H., & Valdez, R. S. (2020). Human-Computer Interaction, Ethics, and Biomedical Informatics. Yearbook of Medical Informatics, 29, 93–98.
[View Article] [Google Scholar]
- Dufendach, K. R., Navarro-Sainz, A., & Webster, K. L. (2022). Usability of human-computer interaction in neonatal care. Seminars in Fetal & Neonatal Medicine, 27, 101395.
[View Article] [Google Scholar]
- Liu J. (2024). ChatGPT: perspectives from human-computer interaction and psychology. Frontiers in Artificial Intelligence, 7, 1418869.
[View Article] [Google Scholar]
- Dino, M. J. S., Davidson, P. M., Dion, K. W., Szanton, S. L., & Ong, I. L. (2022). Nursing and human-computer interaction in healthcare robots for older people: An integrative review. International Journal of Nursing Studies Advances, 4, 100072.
[View Article] [Google Scholar]
- Dias, S. B., Diniz, J. A., Hadjileontiadis, L. J., & Jelinek, H. F. (2022). Editorial: Human-Computer Interaction Serious Games as behavioral change moderators. Frontiers in Psychology, 13, 1115366.
[View Article] [Google Scholar]
- Vansteensel, M. J., & Jarosiewicz, B. (2020). Brain-computer interfaces for communication. Handbook of Clinical Neurology, 168, 67–85.
[View Chapter] [Google Scholar]
- Wang, Y., Nakanishi, M., & Zhang, D. (2019). EEG-Based Brain-Computer Interfaces. Advances in Experimental Medicine and Biology, 1101, 41–65.
[View Article] [Google Scholar]
- McFarland D. J. (2020). Brain-computer interfaces for amyotrophic lateral sclerosis. Muscle & Nerve, 61, 702–707.
[View Article] [Google Scholar]
- Leeb, R., & Pérez-Marcos, D. (2020). Brain-computer interfaces and virtual reality for neurorehabilitation. Handbook of clinical neurology, 168, 183–197.
[View Chapter] [Google Scholar]
- Lee, M. B., Kramer, D. R., Peng, T., Barbaro, M. F., Liu, C. Y., Kellis, S., & Lee, B. (2019). Brain-Computer Interfaces in Quadriplegic Patients. Neurosurgery Clinics of North America, 30, 275–281.
Cite This Article
M. N. Parveen and G. Sharma, “Enhancing Human-Computer Interaction through Brain-Computer Interfaces,” Radius: Journal of Science and Technology 2(1) (2025) 251010. https://doi.org/10.5281/zenodo.15399647
Rights & Permission
This is an open access article published under the Creative Commons Attribution (CC BY) International License, which allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. No permission is needed to reuse this content under the terms of the license.
For uses not covered above, please contact the Scholarly Publication Rights Department.