Oxide Double Perovskites: Bridging the Gap in Photovoltaic and Thermoelectric Applications

Volume 1, Issue 1,  Article Number: 241004 (2024) 

Jitendra Kumar Bairwa1,*ORCID logo | Sunita Kumari2

1Rajesh Pilot Govt. College, Lalsot, Dausa – 303503, Rajasthan, India

2Department of Physics, Govt. Shakambhar P. G. College, Sambhar–Lake (Jaipur) 303604, Rajasthan, India

*Corresponding Author: jkanijwal@gmail.com

Received: 25 September 2024 | Revised: 03 October 2024

Accepted: 09 October 2024 | Published Online: 27 October 2024

© The Author(s), under exclusive license to Scholarly Publication

Abstract

In response to the 20th-century surge in urban migration and the growing need for digital devices, global energy consumption witnessed a steady rise, leading to an energy crisis. To address this, the researcher has turned their attention to renewable energy sources, such as solar cells and thermoelectric generators. However, the efficiency and stability of these materials remain challenging, especially when constructed from toxic or less abundant elements. Oxide double perovskite materials have gained attention due to their tuneable properties and unique crystal structure, making them suitable for photovoltaic and thermoelectric applications.  This study aims to study oxide double perovskite materials’ structural, optical, and thermoelectric properties for exploring their potential in energy conversion applications. This comprehensive study not only contributes to oxide double perovskite materials but also paves the way for future research endeavours. The imperative for both experimental and theoretical exploration is emphasized to unlock the full potential of these compounds in the dynamic landscapes of optoelectronics and thermoelectric devices, fostering sustainable and efficient energy conversion technologies.

Keywords

Photovoltaic applications; Thermoelectric applications; Renewable energy technologies; Perovskite solar cells (PSCs); Perovskite thermoelectrics

References

  1. Dutta, A., Bouri, E., Rothovius, T., & Uddin, G. S. (2023). Climate risk and green investments: New evidence. Energy, 265, 126376

[View Article]       [Google Scholar]

  1. Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111.

[View Article]       [Google Scholar]

  1. Rabbi, M. F., Popp, J., Máté, D., & Kovács, S. (2022). Energy security and energy transition to achieve carbon neutrality. Energies, 15, 8126.

[View Article]       [Google Scholar]

  1. Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11, 176-183.

[View Article]       [Google Scholar]

  1. Ahmad, L., Khordehgah, N., Malinauskaite, J., & Jouhara, H. (2020). Recent advances and applications of solar photovoltaics and thermal technologies. Energy, 207, 118254.

[View Article]       [Google Scholar]

  1. Reber, S., Zimmermann, W., & Kieliba, T. (2001). Zone melting recrystallization of silicon films for crystalline silicon thin-film solar cells. Solar Energy Materials and Solar Cells, 65, 409-416.

[View Article]       [Google Scholar]

  1. Fazal, M. A., & Rubaiee, S. (2023). Progress of PV cell technology: Feasibility of building materials, cost, performance, and stability. Solar Energy, 258, 203-219.

[View Article]       [Google Scholar]

  1. Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590-601.

[View Article]       [Google Scholar]

  1. Tinedert, I. E., Pezzimenti, F., Megherbi, M. L., & Saadoune, A. (2020). Design and simulation of a high efficiency CdS/CdTe solar cell. Optik, 208, 164112.

[View Article]       [Google Scholar]

  1. Romeo, A., & Artegiani, E. (2021). CdTe-based thin film solar cells: past, present and future. Energies, 14, 1684.

[View Article]       [Google Scholar]

  1. Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., … & Hao, X. (2024). Solar cell efficiency tables (Version 64). Progress in Photovoltaics: Research and Applications32, 425-441.

[View Article]       [Google Scholar]

  1. Solak, E. K., & Irmak, E. (2023). Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance. RSC Advances, 13, 12244-12269.

[View Article]       [Google Scholar]

  1. Cui, Y., Yao, H., Hong, L., Zhang, T., Tang, Y., Lin, B., … & Hou, J. (2020). Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 7, 1239-1246.

[View Article]       [Google Scholar]

  1. Cui, Y., Xu, Y., Yao, H., Bi, P., Hong, L., Zhang, J., … & Hou, J. (2021). Single‐junction organic photovoltaic cell with 19% efficiency. Advanced Materials, 33, 2102420.

[View Article]       [Google Scholar]

  1. Arici, E., Hoppe, H., Schäffler, F., Meissner, D., Malik, M. A., & Sariciftci, N. S. (2004). Hybrid solar cells based on inorganic nanoclusters and conjugated polymers. Thin Solid Films, 451, 612-618.

[View Article]       [Google Scholar]

  1. Verlinden, P. J. (2020). Future challenges for photovoltaic manufacturing at the terawatt level. Journal of Renewable and Sustainable Energy, 12, 053505.

[View Article]       [Google Scholar]

  1. Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. H., Al-Shetwi, A. Q., Begum, R. A., … & Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465.

[View Article]       [Google Scholar]

  1. Zeb, K., Ali, S. M., Khan, B., Mehmood, C. A., Tareen, N., Din, W., & Haider, A. (2017). A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan. Renewable and Sustainable Energy Reviews, 75, 1142-1155.

[View Article]       [Google Scholar]

  1. Irrgang, K. (2023). Zur Geschichte der Thermoelektrik. In Altes und Neues zu thermoelektrischen Effekten und Thermoelementen, Springer Vieweg, Berlin, Heidelberg 7-15.

[View Chapter]     [Google Scholar]

  1. Maldonado, O. (1992). Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics, 32, 908-912.

[View Article]       [Google Scholar]

  1. Aridi, R., Faraj, J., Ali, S., Lemenand, T., & Khaled, M. (2021). Thermoelectric power generators: state-of-the-art, heat recovery method, and challenges. Electricity, 2, 359-386.

[View Article]       [Google Scholar]

  1. Luo, D., Li, Y., Yan, Y., Hu, X., Chen, W. H., Ren, Y., & Cao, B. (2023). Realizing ultrahigh ZT value and efficiency of the Bi2Te3 thermoelectric module by periodic heating. Energy Conversion and Management, 296, 117669.

[View Article]       [Google Scholar]

  1. Shtern, Y., Sherchenkov, A., Shtern, M., Rogachev, M., & Pepelyaev, D. (2023). Challenges and perspective recent trends of enhancing the efficiency of thermoelectric materials on the basis of PbTe. Materials Today Communications, 37, 107083.

[View Article]       [Google Scholar]

  1. Basu, R., & Singh, A. (2021). High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review. Materials Today Physics, 21, 100468.

[View Article]       [Google Scholar]

  1. Shtern, M., Sherchenkov, A., Shtern, Y., Borgardt, N., Rogachev, M., Yakubov, A., & Murashko, D. (2023). Mechanical properties and thermal stability of nanostructured thermoelectric materials on the basis of PbTe and GeTe. Journal of Alloys and Compounds, 946, 169364.

[View Article]       [Google Scholar]

  1. Fu, T., Du, J., Su, S., Su, G., & Chen, J. (2022). The optimum configuration design of a nanostructured thermoelectric device with resonance tunneling. Physica Scripta, 97, 055701.

[View Article]       [Google Scholar]

  1. Masood, K. B., Jain, N., Kumar, P., Malik, M. A., & Singh, J. (2021). Nanostructured thermoelectric materials. In Thermoelectricity and Advanced Thermoelectric Materials, Woodhead Publishing 261-311.

[View Chapter]     [Google Scholar]

  1. Yuan, J., & Zhu, R. (2020). A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Applied Energy, 271, 115250.

[View Article]       [Google Scholar]

  1. Li, H., Zhang, C., Li, P., Liu, S., Zhang, H., & He, C. (2023). Recent development in flexible organic thermoelectric fibers for wearable devices. Materials Today Chemistry, 34, 101774.

[View Article]       [Google Scholar]

  1. Araiz, M., Casi, Á., Catalán, L., Martínez, Á., & Astrain, D. (2020). Prospects of waste-heat recovery from a real industry using thermoelectric generators: Economic and power output analysis. Energy Conversion and Management, 205, 112376.

[View Article]       [Google Scholar]

  1. Standring, W. J. F., Dowdall, M., Sneve, M., Selnæs, Ø. G., & Amundsen, I. (2007). Environmental, health and safety assessment of decommissioning radioisotope thermoelectric generators (RTGs) in northwest Russia. Journal of Radiological Protection, 27, 321.

[View Article]       [Google Scholar]

  1. Cataldo, R. (2018). Spacecraft Power System Considerations for the Far Reaches of the Solar System. In: Badescu, V., Zacny, K. (eds) Outer Solar System: Prospective Energy and Material Resources, Springer, Cham. 767-790.

[View Chapter]     [Google Scholar]

  1. Yang, J., & Caillat, T. (2006). Thermoelectric materials for space and automotive power generation. MRS Bulletin, 31, 224-229.

[View Article]       [Google Scholar]

  1. Bhalla, A. S., Guo, R., & Roy, R. (2000). The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 4, 3-26.

[View Article]       [Google Scholar]

  1. Zhao, Y., & Zhu, K. (2016). Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 45, 655-689.

[View Article]       [Google Scholar]

  1. Zhang, X., Liu, H., Wang, W., Zhang, J., Xu, B., Karen, K. L., & Sun, X. W. (2017). Hybrid perovskite light‐emitting diodes based on perovskite nanocrystals with organic–inorganic mixed cations. Advanced Materials, 29, 1606405.

[View Article]       [Google Scholar]

  1. Egger, D. A., Rappe, A. M., & Kronik, L. (2016). Hybrid organic–inorganic perovskites on the move. Accounts of Chemical Research, 49, 573-581.

[View Article]       [Google Scholar]

  1. Longo, J., & Ward, R. (1961). Magnetic compounds of hexavalent rhenium with the perovskite-type structure. Journal of the American Chemical Society, 83, 2816-2818.

[View Article]       [Google Scholar]

  1. Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., & Tokura, Y. (1998). Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 395, 677-680.

[View Article]       [Google Scholar]

  1. Kobayashi, K. I., Kimura, T., Tomioka, Y., Sawada, H., Terakura, K., & Tokura, Y. J. P. R. B. (1999). Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6. Physical Review B, 59, 11159.

[View Article]       [Google Scholar]

  1. Wei, F., Deng, Z., Sun, S., Zhang, F., Evans, D. M., Kieslich, G., & Cheetham, A. K. (2017). Synthesis and properties of a lead-free hybrid double perovskite:(CH3NH3)2AgBiBr6. Chemistry of Materials, 29, 1089-1094.

[View Article]       [Google Scholar]

  1. Targhi, F. F., Jalili, Y. S., & Kanjouri, F. (2018). MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results in Physics, 10, 616-627.

[View Article]       [Google Scholar]

  1. Khandy, S. A., Islam, I., Laref, A., Gogolin, M., Hafiz, A. K., & Siddiqui, A. M. (2020). Electronic structure, thermomechanical and phonon properties of inverse perovskite oxide (Na3OCl): An ab initio study. International Journal of Energy Research, 44, 2594-2603.

[View Article]       [Google Scholar]

  1. Wang, Y., Zhang, H., Zhu, J., Lü, X., Li, S., Zou, R., & Zhao, Y. (2020). Antiperovskites with exceptional functionalities. Advanced Materials, 32, 1905007.

[View Article]       [Google Scholar]

  1. Yu, Y., Wang, Z., & Shao, G. (2018). Theoretical design of double anti-perovskite Na6SOI2 as a super-fast ion conductor for solid Na+ ion batteries. Journal of Materials Chemistry A, 6, 19843-19852.

[View Article]       [Google Scholar]

  1. Berhe, T. A., Su, W. N., Chen, C. H., Pan, C. J., Cheng, J. H., Chen, H. M., … & Hwang, B. J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9, 323-356.

[View Article]       [Google Scholar]

  1. Chowdhury, T. A., Zafar, M. A. B., Islam, M. S. U., Shahinuzzaman, M., Islam, M. A., & Khandaker, M. U. (2023). Stability of perovskite solar cells: issues and prospects. RSC Advances, 13, 1787-1810

[View Article]       [Google Scholar]

  1. Bartel, C. J., Sutton, C., Goldsmith, B. R., Ouyang, R., Musgrave, C. B., Ghiringhelli, L. M., & Scheffler, M. (2019). New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5, eaav0693.

[View Article]       [Google Scholar]

Cite This Article

J. K. Bairwa and S. Kumari, “Oxide Double Perovskites: Bridging the Gap in Photovoltaic and Thermoelectric Applications,” Radius: Journal of Science and Technology 1(1) (2024) 241004.

Rights & Permission

Authors retain copyright of their research articles in this journal, which are published under a Creative Commons Attribution 4.0 (CC-BY) International License, allowing broad dissemination and reuse, including commercial use, provided proper credit is given. The publisher holds exclusive rights to publish, distribute, and grant permissions, including for commercial use, ensure the article’s compatibility with future technologies, and enforce rights against third parties, such as in cases of plagiarism or copyright infringement.